concept of one-dimensional length is simply ill-suited for convoluted coastlines.
Playing out Mandelbrot’s mental exercise involved a newly synthesized field of mathematics, based on fractional—or fractal (from the Latin fractus, “broken”)—dimensions rather than the one, two, and three dimensions of classic Euclidean geometry. The ordinary concepts of dimension, Mandelbrot argued, are just too simplistic to characterize the complexity of coastlines. Turns out, fractals are ideal for describing “self-similar” patterns, which look much the same at different scales. Broccoli, ferns, and snowflakes are good examples from the natural world, but only certain computer-generated, indefinitely repeating structures can produce the ideal fractal, in which the shape of the macro object is made up of smaller versions of the same shape or pattern, which are in turn formed from even more miniature versions of the very same thing, and so on indefinitely.
As you descend into a pure fractal, however, even though its components multiply, no new information comes your way—because the pattern continues to look the same. By contrast, if you look deeper and deeper into the human body, you eventually encounter a cell, an enormously complex structure endowed with different attributes and operating under different rules than the ones that hold sway at the macro levels of the body. Crossing the boundary into the cell reveals a new universe of information.
HOW ABOUT EARTH itself? One of the earliest representations of the world, preserved on a 2,600-year-old Babylonian clay tablet, depicts it as a disk encircled by oceans. Fact is, when you stand in the middle of a broad plain (the valley of the Tigris and Euphrates rivers, for instance) and check out the view in every direction, Earth does look like a flat disk.
Noticing a few problems with the concept of a flat Earth, the ancient Greeks—including such thinkers as Pythagoras and Herodotus—pondered the possibility that Earth might be a sphere. In the fourth century B.C ., Aristotle, the great systematizer of knowledge, summarized several arguments in support of that view. One of them was based on lunar eclipses. Every now and then, the Moon, as it orbits Earth, intercepts the cone-shaped shadow that Earth casts in space. Across decades of these spectacles, Aristotle noted, Earth’s shadow on the Moon was always circular. For that to be true, Earth had to be a sphere, because only spheres cast circular shadows via all light sources, from all angles, and at all times. If Earth were a flat disk, the shadow would sometimes be oval. And some other times, when Earth’s edge faced the Sun, the shadow would be a thin line. Only when Earth was face-on to the Sun would its shadow cast a circle.
Given the strength of that one argument, you might think cartographers would have made a spherical model of Earth within the next few centuries. But no. The earliest known terrestrial globe would wait until 1490–92, on the eve of the European ocean voyages of discovery and colonization.
SO, YES, EARTH is a sphere. But the devil, as always, lurks in the details. In Newton’s 1687 Principia, he proposed that, because spinning spherical objects thrust their substance outward as they rotate, our planet (and the others as well) will be a bit flattened at the poles and a bit bulgy at the equator—a shape known as an oblate spheroid. To test Newton’s hypothesis, half a century later, the French Academy of Sciences in Paris sent mathematicians on two expeditions—one to the Arctic Circle and one to the equator—both assigned to measure the length of one degree of latitude on Earth’s surface along the same line of longitude. The degree was slightly longer at the Arctic Circle, which could only be true if Earth were a bit flattened. Newton was right.
The faster a planet spins, the greater we expect its equatorial bulge to be. A single day on fast-spinning Jupiter, the most