Tags:
General,
science,
Biography & Autobiography,
music,
Computers,
Artificial intelligence,
Genres & Styles,
Philosophy,
Art,
Science & Technology,
Mathematics,
Individual Artists,
Classical,
Logic,
Symmetry,
Bach; Johann Sebastian,
Metamathematics,
Intelligence (AI) & Semantics,
G'odel; Kurt,
Escher; M. C
concrete of theories, such as the study of whole numbers (number theory), were built on solid foundations. If paradoxes could pop up so easily in set theory-a theory whose basic concept, that of a set, is surely very intuitively appealing-then might they not also exist in other branches of mathematics? Another related worry was that the paradoxes of logic, such as the Epimenides paradox, might turn out to be internal to mathematics, and thereby cast in doubt all of mathematics. This was especially worrisome to those-and there were a good number-who firmly believed that mathematics is simply a branch of logic (or conversely, that logic is simply a branch of mathematics).
In fact, this very question-"Are mathematics and logic distinct, or separate%"-was the source of much controversy.
This study of mathematics itself became known as metamathematics-or occasionally, metalogic, since mathematics and logic are so intertwined. The most urgent priority of metamathematicians was to determine the true nature of mathematical reasoning. What is a legal method of procedure, and what is an illegal one? Since mathematical reasoning had always been done in "natural language" (e.g., French or Latin or some language for normal communication), there was always a lot of possible ambiguity. Words had different meanings to different people, conjured up different images, and so forth. It seemed reasonable and even important to establish a single uniform notation in which all mathematical work could be done, and with the aid of which any two mathematicians could resolve disputes over whether a suggested proof was valid or not. This would require a complete codification of the universally acceptable modes of human reasoning, at least as far as they applied to mathematics.
Consistency, Completeness, Hilbert's Program
This was the goal of Principia Mathematica, which purported to derive all of mathematics from logic, and, to be sure, without contradictions! It was widely admired, but no one was sure if (1) all of mathematics really was contained in the methods delineated by Russell and Whitehead, or (2) the methods given were even self-consistent. Was it absolutely clear that contradictory results could never be derived, by any mathematicians whatsoever, following the methods of Russell and Whitehead?
This question particularly bothered the distinguished German mathematician (and metamathematician) David Hilbert, who set before the world community of mathematicians (and metamathematicians) this chal
lenge: to demonstrate rigorously-perhaps following the very methods outlined by Russell and Whitehead-that the system defined in Principia Mathematica was both consistent (contradiction-free), and complete (i.e., that every true statement of, number theory could be derived within the framework drawn up in P.M.). This was a tall order, and one could criticize it on the grounds that it was somewhat circular: how can you justify your methods of reasoning on the basis of those same methods of reasoning? It is like lifting yourself up by your own bootstraps. (We just don't seem to be able to get away from these Strange Loops!)
Hilbert was fully aware of this dilemma, of course, and therefore expressed the hope that a demonstration of consistency or completeness could be found which depended only on "finitistic" modes of reasoning. "these were a small set of reasoning methods usually accepted by mathematicians. In this way, Hilbert hoped that mathematicians could partially lift themselves by their own bootstraps: the sum total of mathematical methods might be proved sound, by invoking only a smaller set of methods. This goal may sound rather esoteric, but it occupied the minds of many of the greatest mathematicians in the world during the first thirty years of this century.
In the thirty-first year, however, Godel published his paper, which in some ways utterly demolished Hilbert's program. This paper revealed not only that there were irreparable