tiny cage suspended at the top of the telescope, how to carefully move the telescope through the sky, how to develop and print. My generation was the first entirely digital generation of astronomers. All telescopes today have digital cameras that use, in only slightlyfancier form, the same technology used in everyone’s handheld digital cameras around the world. The change in astronomy is as dramatic as it has been in photography. The ease and speed with which images can be obtained and examined and manipulated and shared has transformed the way that astronomy is done today. So when I overlooked the 48-inch Schmidt Telescope, it was mostly because I considered it a relic from the days of prehistoric astronomy.
But on that snowy, foggy Thanksgiving night at Palomar, I decided that visiting this relic to see how ancient astronomy used to be performed would be an entertaining way to spend a few of the nighttime hours. After making sure I knew exactly which way to go, I walked down the dark, snowy road through the piney woods, past the largest telescope, down a road I had never taken, to where the 48-inch Schmidt resided. Someone was inside, tidying up in the cramped control room that sat underneath the telescope. I introduced myself and met Jean Mueller. She was tidying, in lieu of her usual nighttime job, which was to use the 48-inch Schmidt to once again make a new map of the full sky to compare to the first.
Using the 48-inch Schmidt? It was a fossil. Why would anyone still want to use it and its messy and cumbersome photographic plates? The answer is relatively simple. Even though astronomy has progressed greatly since the days of photographic plates, and even though digital cameras make astronomers’ lives incomparably easier and better, one thing had gotten worse. A Schmidt telescope is designed to look at a huge swath of sky at once. Every time a fourteen-inch-square photographic plate—literally just a piece of glass with photographic emulsion painted on one side of it—is placed at the back of the telescope and exposed to the night sky, an enormous piece of the sky is photographed.Digital cameras on telescopes, in contrast, are much better at seeing faint detail but much worse at seeing large swaths of sky. A typical telescope equipped with a digital camera could, at the time, only see an area of the sky more than one thousand times smaller. The obvious solution would simply be to build a bigger digital camera, but to see as much sky as you could see with the photographic plate you would need a five-hundred-megapixel digital camera. Even today that is a daunting number. At the time, when only high-end photographers had a single megapixel to their name, if you wanted to make a map of the sky, just as the 48-inch Schmidt had done in the 1950s, it made much more sense to accept the hardships of the photographic plate for its unparalleled ability to sweep up the night sky at a fast pace.
Jean explained this latest survey and described how the photographic plates were taken and developed. She talked about how she had come to be working there at Palomar after a few years at another observatory. She then wistfully told me that the days of the 48-inch Schmidt were almost over. This second Palomar Observatory Sky Survey was almost complete, and she didn’t anticipate that anyone else would be using the telescope and its photographic plates after that. All of the fall sky had already been photographed, and no one planned on using the telescope at all during the fall season the following year.
All major telescopes around the world are scheduled to be used every single night of the year, with the occasional exception being Christmas, though I’ve worked at telescopes on Christmas Day plenty of times myself. I find the idea of a telescope not being used almost viscerally painful. It’s bad enough when the reason is technical or simply weather related, but when a telescope is not being used for simple lack of interest it