talk, they chalk the chalk, and they, like us, marvel at how often their abstract computations fit the fleshiness of life. The physicist Eugene Wigner talked of "the unreasonable effectiveness of mathematics"âin delineating the present, disinterring the past, and baking a trustier fortune cookie. With the aid of mathematics, scientists can calculate solar eclipses thousands of years in advance, for example, or gauge when to launch a space probe so that it will rendezvous with Neptune, or predict the life span and death throes of a distant star. Mathematics has proved to be such a potent means for dissecting reality that many scientists see it as not merely a human invention, like a microscope or a computer, but a reflection of traits inherent to the cosmos, a glimpse into its underlying architecture and operating system. By this view, you needn't be the hominid descendant of a lungfish or the intellectual descendant of the Greek mathematician Euclid to realize that the structure of space-time has a distinct saddleback geometry to it, which we earthlings label non-Euclidean. "When somebody says they were the first person to discover quantum mechanics or relativity or the like, I always think to myself, it's probably been discovered millions of times before, by other civilizations elsewhere in this galaxy or in other galaxies," said the theoretical physicist John Schwarz of Caltech.
For all the power of math in making sense of reality, though, math should not be thought of as something inviolate, matchless, even sacred. A mathematical description of a phenomenon is not a "truer" description than an equivalent, nonmathematical explanation would be, any more than the word "table" is a truer rendering of "a piece of furniture having a smooth, flat top on legs" than are the words "mesa," "tavolo," or "Tisch." Math is
a
language, not
the
language, and its symbols can be explained in other idioms, including that lovely English dialect called Plain. For all but a tiny clique of researchers known as pure mathematicians, who have scant interest in connecting the dots between theorem and you-are-here, math is a means to an end, and the end must do more than make the pi higher. It must deliver reality back to us, this time with chapter headings, annotations and footnotes, and wise verbs strong enough to bear the weight of the inevitable sentence endpoint, the question mark. I get irritated with scientists who complain about the reluctance of popular science writers to include a sprinkling of math in their narrative, and who insist that the story told is therefore incomplete and even slightly misleading, as though the point of the math was the math was the math. "In principle, every equation can be expressed in English as a sentence," said Brian Greene. Admittedly, such transpositions often would be clumsy sentences, and you wouldn't want to curl up with a book of them, but the moral is clear: even if you remain numb to numbers, you can still understand what they have to tell us about the universe. You can become scientifically quite sophisticated without mastering much if any math. "I have never felt that science was quite so dependent on mathematics as some scientists do," said Kip Hodges, director of the School of Earth and Space Exploration at Arizona State University. "Mathematics is a way of describing nature but not necessarily of understanding it."
Yes, our children should be taught much more math and in far greater depth than they currently are in the average American classroom. Absolutely. But we must face the sad truth that children can take it, and adults cannot. As a consequence of brain biology, children are brilliant at learning new languages of all sorts. Their neurons are practically liquid, pouring across local loci and making new friends and synapses with hardly a grunt of effort. As we age, however, the cells settle into place, maybe invest in a sofa and china cabinet, and the entire neuronal matrix, slowly but
Kevin J. Anderson, Rebecca Moesta