whole measurement took fifty-seven days, and that did not include the time needed for the construction of end-markers. These were meant to be permanent and so had to combine the durability of a blockhouse with the hairline precision required for registering in the ground the actual mark over which the theodolite would be aligned for triangulation.
And still the all-important theodolite had not arrived. In fact report now had it that the ship in which it was stowed had been captured by the French. This turned out to be true. The ship had been conducted into Port Louis in Mauritiusand the great theodolite had there been landed and unpacked. Happily the French authorities, when they realised what it was, rose nobly to the occasion. Repacked and unharmed, it was gallantly forwarded to India and arrived in September ‘along with a complimentary letter to the government of Madras’.
Lambton could at last begin his triangulation. In late September he took angles from his base-line to pre-selected points to the south and west. The short southern series of triangles down the coast was to determine the length of a degree; it took about a year. Then in October 1804 he turned his back on the coast. Heading west and inland, he would carry his triangles right across the peninsula and then begin the north – south series known as the Great Arc.
Over the next twenty years sightings of Lambton in Madras would be of rare occurrence. As in Canada, he seemed again to have disappeared into a continental void; perhaps after six years on the public stage, he was happy enough to slip back into the wings of obscurity. But the government insisted on progress reports and the scientific world awaited his findings. Lambton’s personal papers would disappear with him. Until the young Everest joined him in late 1818 there are few firsthand accounts of his conduct or his establishment. But his reports found their way into the Survey’s files and his scholarly monographs into learned journals. Additionally one of his assistants would pen some recollections; and there is the unexpected evidence of two Lambton children, both born while he was working on the Great Arc. As he later admitted, the years spent in India pursuing his obsession would be the happiest of his life.
THREE
Tall Tales from the Hills
W hen measuring a base-line it was important to discover, as well as its precise length, its height above sea-level. Other heights ascertained in the course of triangulation could then be expressed in terms of this universal standard rather than in terms of individual base-lines. To establish what would in effect be the vertical base of his whole survey Lambton had therefore chosen a site for his base-line which was only three or four miles from the Madras coast and looked, given the lie of the land, to be only a few feet above it. But working out exactly how many was still a matter of some delicacy.
First, on the sands to the south of Madras’ famous Marina Beach, the highest tides had been carefully observed and their maximum reach marked with a flagpole. (In 1802 ‘sea-level’ was construed as high water, although later in the century a mean between high tide and low tide would be adopted as the standard and all altitudes adjusted accordingly.) From this flagpole on the beach the horizontal distance to the grandstand of the Madras racecourse, still today hard by St Thomas’s Mount, was carefully measured by chain; it came to 19,208 feet. Next, from the railings at the top of the grandstand the angle of depression to the flag on the beach was observed by theodolite. Then the process was reversed with the angle of elevation from the beach to the stand being observed.
The repetition was necessary because Lambton was keen to measure the effect of a phenomenon known as refraction, whereby sight-lines become vertically distorted, or bowed, bythe earth’s atmosphere. Here was another of those subtle variables which bedevilled geodetic surveying. In