the sugar bowl.
GLUTEN: WE HARDLY KNOW YA!
If you were to add water to wheat flour, knead the mixture into dough, then rinse the glob under running water to wash away starches and fiber, you’d be left with a protein mixture called gluten.
Wheat is the principal source of gluten in the diet, both because wheat products have come to dominate and because most Americans do not make a habit of consuming plentiful quantities of barley, rye, bulgur, kamut, or triticale, the other sources of gluten. For all practical purposes, therefore, when I discuss gluten, I am primarily referring to wheat.
While wheat is, by weight, mostly carbohydrate as amylopec-tin A, gluten protein is what makes wheat “wheat.” Gluten is the unique component of wheat that makes dough “doughy”: stretch-able, rollable, spreadable, twistable, baking gymnastics that cannot be achieved with rice flour, corn flour, or any other grain. Gluten allows the pizza maker to roll and toss dough and mold it into the characteristic flattened shape; it allows the dough to stretch and rise when yeast fermentation causes it to fill with air pockets. The distinctive doughy quality of the simple mix of wheat flour and water, properties food scientists call viscoelasticity and cohesiveness, are due to gluten. While wheat is mostly carbohydrateand only 10 to 15 percent protein, 80 percent of that protein is gluten. Wheat
without
gluten would lose the unique qualities that transform dough into bagels, pizza, or focaccia.
Here’s a quick lesson in this thing called gluten (a lesson that you might categorize under “Know thine enemy”). Glutens are the storage proteins of the wheat plant, a means of storing carbon and nitrogen for germination of the seed to form new wheat plants. Leavening, the “rising” process created by the marriage of wheat with yeast, does not occur without gluten, and is therefore unique to wheat flour.
The term “gluten” encompasses two primary families of proteins, the gliadins and the glutenins. The gliadins, the protein group that most vigorously triggers the immune response in celiac disease, has three subtypes: α/β-gliadins, γ-gliadins, and ω-gliadins. Like amylopectin, glutenins are large repeating structures, or polymers, of more basic structures. The strength of dough is due to the large polymeric glutenins, a genetically programmed characteristic purposefully selected by plant breeders. 13
Gluten from one wheat strain can be quite different in structure from that of another strain. The gluten proteins produced by einkorn wheat, for example, are distinct from the gluten proteins of emmer, which are, in turn, different from the gluten proteins of
Triticum aestivum. 14, 15
Because fourteen-chromosome einkorn, containing the so-called A genome (set of genes), has the smallest chromosomal set, it codes for the fewest number and variety of glutens. Twenty-eight-chromosome emmer, containing the A genome with the added B genome, codes for a larger variety of gluten. Forty-two-chromosome
Triticum aestivum,
with the A, B, and D genomes, has the greatest gluten variety, even before any human manipulation of its breeding. Hybridization efforts of the past fifty years have generated numerous additional changes in gluten-coding genes in
Triticum aestivum,
most of them purposeful modifications of the D genome that confer baking and aesthetic characteristics on flour. 16 Indeed, genes located in the D genome are those mostfrequently pinpointed as the source of the glutens that trigger celiac disease. 17
It is therefore the D genome of modern
Triticum aestivum
that, having been the focus of all manner of genetic shenanigans by plant geneticists, has accumulated substantial change in genetically determined characteristics of gluten proteins. It is also potentially the source for many of the odd health phenomena experienced by consuming humans.
IT’S NOT
ALL
ABOUT GLUTEN
Gluten isn’t the only potential villain lurking in wheat