a spacecraft that was as reusable as possible would cut down on what had to be built for each launch, and thus on the cost of each launch. Lower the cost of putting a pound of material in orbit, and you can put more pounds of material in orbit. The space frontier opens up.
“We had a general idea of what specifications the shuttle was supposed to be, but in those days it was substantially larger and more aggressive than what we know today,” Mattingly said. “So we went through this requirements refinement where everybody broke up into groups to go lay out what they had to do, and it evolved into something we called design reference missions. Rigidly, the idea was, we knew the shuttle was going to last for decades, and we knew nobody was smart enough to define what those missions that would come after we started were going to evolve into. So we took great pride in trying to define the most stressful missions that we could.”
Mattingly said the program initially outlined three types of possible missions. One was for the shuttle to be used as a laboratory. “We laid out all the requirements we could think of for a laboratory—the support and what the people need to work in it, and all that kind of stuff,” Mattingly recalled. A second type of mission was defined as deploying a payload on orbit. “That was to be one that launched and had the manipulator arm and cradles and all of the things necessary to do that.”
Then there was the idea of a polar mission. Such a mission would involve putting the shuttle in a polar orbit—leaving the launch site and heading into a north–south inclination that would cause it to orbit from one pole to the other. A satellite in polar orbit would be able to fly over any point on the surface of Earth—a valuable capability for intelligence gathering. “The polar mission was really shaped after a DoD [U.S. Department of Defense] requirement,” Mattingly said.
The original mission, as I recall, was a one-rev mission. [A “rev” is essentially one orbit around Earth.] You launched, got in orbit, opened the payload bay doors, deployed a satellite, rendezvoused with an existing satellite, retrieved it, closed the doors, and landed. And this was all going to be done in one rev or maybe it was two revs, but it was going to be done so that by the time anyone knew we were there, it was all over. Well, we worked on that mission and worked on it and worked on it, and finally it became [two different design reference missions]. We just couldn’t figure out how to do it all on one short timeline.
3. Space Shuttle design evolution, 1972–74. Courtesy NASA .
The military design reference missions were a response to a political exigency NASA had learned to deal with during the 1970s. Most notably, in developing the Skylab space station, NASA found itself competing for funding against the air force, which was seeking money at the same time for its Manned Orbiting Laboratory program. Although the two programs were very different in their goals, they shared enough superficial similarities that Congress questioned why both were necessary. With the shuttle, NASA hoped to avoid a repeat of this sort of competition, and have an easier sell to Congress, by gaining buy-in for the idea from the military. According to astronaut Joe Allen,
Leadership in the early 1970s decided the only way the Apollo-victorious NASA would be given permission to build a reusable space transportation system is that there be identified other users for the system other than just the scientists. This nation’s leadership identified the other users as the military. The Space Shuttle would be used to carry military payloads. The military has its responsibilities, and they said, “All right. If our payloads are going to go aboard, we do have one requirement; that is that your Space Shuttle be able to take the payloads to orbit, put them there, and land back at the launch site after making only one orbit of the Earth.”
The