need for quick, polar missions greatly affected the design of the shuttle, yet interestingly the Space Shuttle never flew a polar-orbit mission. “At face value, that doesn’t seem all that difficult to do,” Mattingly said of the polar-orbit missions,
but what it meant was, the shape of the orbiter went from being a very simple lifting body-type shape, with very, very small wings, to a much larger vehicle with delta-shaped wings. I don’t know the exact numbers, but the wings that go to orbit and come home again [make up a large portion of] the weight of the vehicle, and they’re never fully used; only the outermost wingtips are used. All that vast expanse—with all that tile, and all the carbon-carbon [carbon-fiber-reinforced carbon] along the leading edge—is never used. It would be used if it were to go to space in a polar orbit and then come home. It would be used to gain the fifteen hundred miles of cross-range that one needs because the Earth moves fifteen hundred miles in its rotation during the time you’ve gone once around. So you have to have some soaring ability. That’s what these large wings are for. The Space Shuttle would have cost much less money. It would cost much less to refurbish each time. Still, it would not be an economic wonder, but it would be economically okay, were it not for these huge wings. Of course, that requirement, in hindsight, was never used, was never needed, but the current Space Shuttle will forever be burdened with these wings.
Mattingly also said that the design missions established the capabilities that the Space Shuttle system would need to have. Each specification let to a variety of trickle-down requirements, and gradually the vehicle began taking shape.
These requirements we set really had some interesting things. Some of them were politically defined, like you’ll land at any ten-thousand-foot runway in the world. That’s all it takes. In selling the program, they had to appeal to just every constituency you could find to cobble together a consortium of backers that would keep the program sold in Congress. People don’t recognize how that ripples back through a design into what you really get, and, of course, by the time you know what you’ve got, the people who put those requirements in, they’re history. So it’s interesting. But that ten-thousand-foot runway requirement set a lot of limits on aerodynamics and putting wings on the airplane. The cross-range—that was the air force requirement for this once-around polar mission abort—that sized the wings and thermal conditions. That precluded us from using a design called a lifting body that the folks out at Edwards [Air Force Base, California] had been playing with and had demonstrated in flights. It was structurally a much nicer design, but you just couldn’t handle the aerodynamic characteristics that were required to meet these things. So we had a vertical fin on this thing and big wings, and it’s a significant portion of shuttle’s weight, and the maintenance that goes with it is attributed to the same thing.
Mattingly had the unique vantage point of watching the shuttle program evolve from a concept through logistical support into its mature state, he recalled. “I look back and I say, ‘Well, we know what we started to do, and we know what we have, and they’re not always the same. Why?’ Because it was an extraordinary job. Apollo was a challenge because it was just so big and it was audacious, and time frame was tight, and all of those things.” But in many ways, Mattingly said, the shuttle was even more challenging.
Essentially, it was so demanding that all of the engineering and ops [operations] people . . . generally stayed on. We didn’t have a lot of technical attrition after Apollo. At least that’s my impression. At least the middle-level guys all stayed, and they kept working it because they recognized that the shuttle was a far more challenging job than Apollo in many technical