Tags:
General,
science,
Biography & Autobiography,
music,
Computers,
Artificial intelligence,
Genres & Styles,
Philosophy,
Art,
Science & Technology,
Mathematics,
Individual Artists,
Classical,
Logic,
Symmetry,
Bach; Johann Sebastian,
Metamathematics,
Intelligence (AI) & Semantics,
G'odel; Kurt,
Escher; M. C
however, she cautions that "The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform."
Though she well understood the power of artificial computation, Lady Lovelace was skeptical about the artificial creation of intelligence. However, could her keen insight allow her to dream of the potential that would be opened up with the taming of electricity?
In our century the time was ripe for computers-computers beyond the wildest dreams of Pascal, Leibniz, Babbage, or Lady Lovelace. In the 1930's and 1940's, the first "giant electronic brains" were designed and built. They catalyzed the convergence of three previously disparate areas: the theory of axiomatic reasoning, the study of mechanical computation, and the psychology of intelligence.
These same years saw the theory of computers develop by leaps and bounds. This theory was tightly linked to metamathematics. In fact, Godel's Theorem has a counterpart in the theory of computation, discovered by Alan Turing, which reveals the existence of inelucPable "holes" in even the most powerful computer imaginable.
Ironically, just as these somewhat eerie limits were being mapped out, real computers were being built whose powers seemed to grow and grow beyond their makers' power of prophecy. Babbage, who once declared he would gladly give up the rest of his life if he could come back in five hundred years and have a three-day guided scientific tour of the new age, would probably have been thrilled speechless a mere century after his death-both by the new machines, and by their unexpected limitations.
By the early 1950's, mechanized intelligence seemed a mere stone's throw away; and yet, for each barrier crossed, there always cropped up some new barrier to the actual creation of a genuine thinking machine. Was there some deep reason for this goal's mysterious recession?
No one knows where the borderline between non-intelligent behavior and intelligent behavior lies; in fact, to suggest that a sharp borderline exists is probably silly. But essential abilities for intelligence are certainly:
to respond to situations very flexibly;
to take advantage of fortuitous circumstances;
to make sense out of ambiguous or contradictory messages;
to recognize the relative importance of different elements of a
situation;
to find similarities between situations despite differences which may separate them; to draw distinctions between situations despite similarities may link them; to synthesize new concepts by taking old them together in new ways; to come up with ideas which are novel.
Here one runs up against a seeming paradox. Computers by their very nature are the most inflexible, desireless, rule-following of beasts. Fast though they may be, they are nonetheless the epitome of unconsciousness. How, then, can intelligent behavior be programmed? Isn't this the most blatant of contradictions in terms? One of the major theses of this book is that it is not a contradiction at all. One of the major purposes of this book is to urge each reader to confront the apparent contradiction head on, to savor it, to turn it over, to take it apart, to wallow in it, so that in the end the reader might emerge with new insights into the seemingly unbreathable gulf between the formal and the informal, the animate and the inanimate, the flexible and the inflexible.
This is what Artificial Intelligence (A1) research is all about. And the strange flavor of AI work is that people try to put together long sets of rules in strict formalisms which tell inflexible machines how to be flexible.
What sorts of "rules" could possibly capture all of what we think of as intelligent behavior, however? Certainly there must be rules on all sorts of
different levels. There must be many "just plain" rules. There must be "metarules" to modify the "just plain" rules; then "metametarules" to modify the metarules, and so on.
The flexibility of intelligence comes