time lead to either a balance of the opposing genes or an extinction of one of the two kinds altogether. Their action is summarized in this maxim: selfish members win within groups, but groups of altruists best groups of selfish members.
The theory of inclusive fitness, in opposition to the standard theory of natural selection, and with it the established principles of population genetics, treats the individual group member, not its individual genes, as the unit of selection. Social evolution arises from the sum of all the interactions of the individual with each of the other group members in turn, multiplied by the degree of hereditary kinship between each pair. All the effects of this multiplicity of interactions on the individual, both positive and negative, make up its inclusive fitness.
Although the controversy between natural selection and inclusive fitness still flickers here and there, the assumptions of the theory of inclusive fitness have proved to be applicable only in a few extreme cases unlikely to occur on Earth or any other planet. No example of inclusive fitness has been directly measured. All that has been accomplished is an indirect analysis called the regressive method, which unfortunately has itself been mathematically invalidated. The use of the individual or group as the unit of heredity, rather than the gene, is an even more fundamental error.
At this point, prior to developing the theories further, it will be instructive to take a specific example in the evolution of social behavior and see how it is treated respectively by each approach.
The life cycle of ants has always been a favorite of inclusive fitness theorists as offering proof of the role of kinship and the validity of inclusive fitness. Many ant species have the following life cycle: their colonies reproduce by releasing virgin queens and males from the nest. After mating, the queens do not return home, but disperse to establish new colonies on their own. The males die within hours. The virgin queens are much larger than the males, and colonies invest a correspondingly larger fraction of their resources to their production.
The inclusive fitness explanation of the size difference between the sexes, introduced in the 1970s by the biologist Robert Trivers, is as follows. The means of sex determination in ants is peculiar, such that sisters are more closely related to one another than they are to their brothers (providing the queens mate with only one male). Because the workers raise the young, Trivers continued, and because they favor sisters over brothers, they invest more in virgin queens than in males. The colony, with workers in control, accomplish this end by making the queens individually much larger in size. This process deduced with inclusive fitness theory is called indirect natural selection.
The standard population genetics model, in contrast, posits direct natural selection and tests it with direct observation in the field and laboratory. The larger size ofthe virgin queen is necessary, as all entomologists know, because of the way she starts a new colony. She digs a nest, seals herself in, and raises the first brood of workers on her large bodily reserves of fat and metabolized wing muscles. The male is small because its only function is to mate. After achieving insemination, it dies. (Queens live on in a few species, incidentally, for more than twenty years.) The roundabout inclusive fitness explanation for investments according to gender is therefore wrong.
The assumption of inclusive fitness theory that workers control the colony’s allocation, a crucial point in this reasoning, is also wrong. Using the valve on her spermatheca, the bag-like organ in which the sperm are stored, the queen determines the sex of the offspring born. If a sperm is released to fertilize an egg in the queen’s ovary, a female is born. If no sperm is released, the egg is not fertilized, and from the unfertilized egg a male is born. Thereafter, a