with the ammonia. It doesn’t seem very healthy or remotely digestible at this point, but eventually, in a neat bit of forward planning (which is curiously called “backward integration”), some of the previously manufactured nitric acid is mixed with the ammonia/acetaldehyde blend resulting in niacin, a white solid that is milled into a flourlike powder and packed into twenty-kilogram bags.
Vitamin B3 is one of the few vitamins that the body can make, which it does with more finesse than the Swiss by converting the amino acid tryptophan, commonly found in fish, lean meat, whole grains, and, of course, turkey. However, you’d need to consume much more than you normally eat to fight pellagra, that old-fashioned disease that boasts a whole range of symptoms including severe dermatitis, diarrhea, dementia, and death (perhaps niacin should be called the anti-D vitamin).
Pellagra was common in Europe and Central America for two hundred years, and in the rural South of the United States after the Civil War, when cornmeal, which does not contain niacin, became a food staple, along with salt pork and molasses. A more varied diet would have prevented the problem, but farmers at this time were concentrating on cash crops like cotton and tobacco, not food. In the United States, especially in the poor South, pellagra claimed more lives than any other nutritional deficiency—more than 100,000 just since 1900. Niacin fortification simply eliminated pellagra as a death threat. Also, it’s important to note that niacin alone is not only essential for growth and energy, the other B vitamins actually cannot function properly without it.
T HIAMINE M ONONITRATE (B1): T HE F IRST O NE
Although natural thiamine is found in small quantities in many foods, it is the husk of brown rice that led to its discovery; in fact, it was the first vitamin to be discovered at all. Christiaan Eijkman, a Dutch scientist who worked in Indonesia, realized in the late 1800s that only those people eating polished (white rice) from which the brown husk—the rice bran—had been removed suffered from the awful, nerve-damaging disease beriberi. (“Beriberi,” a Sinhalese word meaning “I cannot, I cannot,” became the name of the disease because a victim is too sick to do anything due to extreme stiffness of the lower limbs, pain, and even paralysis.) By isolating the factor that was essential to health in this one case, Eijkman concluded that certain chemicals in food were essential to health in general, laying the groundwork for the discovery of vitamins (and a Nobel Prize in Medicine in 1929) a few years later.
In 2005, the world’s largest fine chemical company, the German firm BASF, started a cooperative Chinese venture with the Tianjin Zhongjin Pharmaceutical Co., a couple of hours north of Beijing, creating what is now the world’s largest B1 plant. Each year, BASF expects to produce three thousand tons of a material that is used by the fraction of an ounce in pills and, of course, bread, pasta, and Twinkies.
The manufacturing process of thiamine varies from company to company and is an especially closely guarded secret. But thiamine mononitrate, the most common form of thiamine, is usually synthesized from basic petrochemicals derived from that old trusted food source, coal tar. Thiamine chemicals are finished with about fifteen steps that may include, depending on the company, such appetizing processes as oxidation with corrosive strength hydrogen peroxide and active carbon; reactions with ammonium nitrate, ammonium carbonate, and nitric acid (to form a salt); and washing with alcohol. It is edible at this point, but before it can be mixed into flour, the manufacturer dries it into crystals and sieves it into a fine powder. Some is further reacted with methanol, hydrochloric acid, and ethanol to make thiamine hydrochloride, another popular version of thiamine found in packaged foods.
R IBOFLAVIN (B2): B REWED TO P ERFECTION
Great chefs each