be poured off and recycled for further pickling. The crystals are then partially dried into dark, sandy clumps, and shipped by the truckload to the ferrous sulfate processors in one-ton supersacks.
The biggest ferrous sulfate processor in the United States, by far, and one that specializes in the purest food-grade additive, is Crown Technology in Indianapolis, Indiana, according to their VP of Operations, J. Scott Peterson. Crown dries and purifies the crystals from Midwestern steel mills and grinds them into a metallic gray powder, shipping many thousands of pounds a day in fifty-pound boxes. The finest, most consistent particles are sent to flour enrichment companies like those that supply Hostess.
Much of their ferrous sulfate is used in nonnutritious ways, products and processes that include fabric dye, ink, water purification, wood preservation, and weed killers. But fortification is also a lucrative business, and the next big thing seems to be adding iron to tortillas in order to fight rampant anemia in Mexico.
Twinkie bakeries sometimes switch between reduced iron and ferrous sulfate (FS), probably based more on pricing and availability than on nutrition or chemistry. Reduced iron is made from food-quality iron that has been reacted with carbon monoxide and/or hydrogen to get ferric oxide (technically the same as rust) that is then ground into an ultrafine, dust like powder. Reduced iron is less expensive but not as strong as ferrous sulfate; the more finely it is ground, the more digestible, but also the more expensive it becomes. This said, it comes mostly from India and China, where labor costs are dramatically lower than in the United States, so cost is an issue vaguely in its favor.
Reduced iron is also less likely than FS to cause rancidity in fat.There are some negatives, though: its little specks might darken the Twinkies, and when flour companies pass their product through strong magnets, looking for errant nuts, bolts, or wedding rings, it’s possible that the reduced iron dust might pop out, which would be embarrassingly counterproductive, to say the least.
N IACIN (B3 ): A LPINE O IL
Niacin is made a world away from Midwestern steel mills. In Switzerland, on the Lonza River just a bit north of the Matterhorn, not far from Zermatt, in the little Alpine valley town of Visp (population about 6,600), window boxes overflow with bright flowers. Perfectly squared-off farms frame the village border. Snow-covered Alps hover nearby. And Lonza Ltd. makes most of the world’s niacin in an ultraclean liquefied petroleum gas (LPG)/naphtha cracker and petrochemical plant, a mini-city of orderly tubes, towers, and huge tanks surrounded by squiggly white and green pipes and covered with catwalks and ladders.
Lonza’s Director of Nutrition, Elias Alonso, the only vitamin manufacturer to offer me a tour, explains the complex processing of simple ingredients. Water and air are two of the three basic ingredients of niacin (water and air are the definition of basic). The third is petroleum, in the form of naphtha or liquid petroleum gas, which is culled from the Middle East or the North Sea and then processed by French and Italian refineries. All together, these three seem an unlikely mix of raw ingredients for a vitamin. First, the petroleum is cracked (processed under extreme heat and pressure) into methane (which leads to acetylene, as in welding torches), ethylene (which goes on to make the common plastic polyethylene as well as a zillion other things), and hydrogen. Air is liquefied and separated into nitrogen and oxygen in order to make ammonia, and is eventually mixed with a little hydrogen, from natural gas, to make nitric acid (that’s the source of the nitrogen, the original “amine” that led to the discovery of all vitamins). The ethylene and acetylene are then mixed under pressure with some water and a rare platinum catalyst to make acetaldehyde, a flammable liquid, which is further processed and mixed