may well be the most widely reprinted set of natural science data ever collected.
Presented in the form of a graph, the Keeling Curve looks like the edge of a saw that is being held at a tilt. Each tooth on the saw corresponds to a single year. CO 2 levels fall to a minimum in the summer, when the trees of the Northern Hemisphere are taking up carbon dioxide for photosynthesis, and rise to a maximum in the winter, when these trees go dormant. (In the Southern Hemisphere, there are fewer forests.) The tilt, meanwhile, corresponds to the rising annual mean.
The Keeling Curve shows that CO2 levels have been rising steadily since the 1950s. Credit: Scripps Institution of Oceanography.
The first full year that CO 2 levels were recorded at Mauna Loa—1959—that mean stood at 316 parts per million. By the following year, it had reached 317 parts per million, prompting Keeling to observe that the reigning assumption about CO 2 absorption by the oceans was probably wrong. By 1970, the level had reached 325 parts per million, and by 1990, it was up to 354 parts per million. In the summer of 2005, the CO 2 level stood at 378 parts per million, and by now, it has almost certainly risen to 380 parts per million. At this rate, it will reach 500 parts per million—nearly double preindustrial levels—by the middle of this century, which is to say, roughly two thousand eight hundred and fifty years ahead of Arrhenius’s prediction.
Chapter 3
Under the Glacier
Swiss Camp is a research station that was set up in 1990 on a platform drilled into the Greenland ice sheet. Ice flows like water, only more slowly, and, as a result, the camp is always in motion: in fifteen years, it has migrated by more than a mile, generally in a westerly direction. Every summer, the whole place gets flooded, and every winter, its contents solidify. The cumulative effect of all this is that almost nothing at Swiss Camp functions anymore the way it was supposed to. To get into it, you have to clamber up a snowdrift and descend through a trapdoor in the roof, as if entering a ship’s hold or a space module. The living quarters are no longer habitable, so now everyone at the camp sleeps outside, in tents. (The one assigned to me was, I was told, the same sort used by Robert Scott on his ill-fated expedition to the South Pole.) By the time I arrived at the camp, in late May, someone had jackhammered out the center of the workspace, which was equipped with some battered conference tables. Under the tables, where, under normal circumstances, you would stick your legs, there were still three-foot-high blocks of ice. Inside of the blocks, I could dimly make out a tangle of wires, a bulging plastic bag, and an old dustpan.
Konrad Steffen, a professor of geography at the University of Colorado, is the director of Swiss Camp. A native of Zurich, Steffen speaks English in the lilting cadences of Schweizerdeutsch . He is tall and lanky, with pale blue eyes, a graying beard, and the unflappable manner of a cowboy in a western. Steffen fell in love with the Arctic when, as a graduate student in 1975, he spent a summer on Axel Heiberg Island, four hundred miles northwest of the north magnetic pole. A few years later, for his doctoral dissertation, he lived for two winters on the sea ice off Baffin Island. (Steffen told me that for his honeymoon he had wanted to take his wife to Spitsbergen, an island five hundred miles north of Norway, but she demurred, and they ended up driving across the Sahara instead.)
When Steffen planned Swiss Camp—he built much of the place himself—it was not with global warming in mind. Rather, he was interested in following meteorological conditions on what is known as the ice sheet’s “equilibrium line.” Along this line, winter snow and summer melt are supposed to be precisely in balance. But in recent years, “equilibrium” has become an increasingly elusive quality. During the summer of 2002, for example, melt occurred in